

Mesh Optimization – V1.0

Table of Contents

Introduction	3
How to use	3
Disclaimer:	3
On Project-Load	3
Editing the Configuration (Advanced)	8
Core Settings	8
Base Optimization Settings	10
Limitations	12
Appendix 1 – (Mapping) IFC Class to Bexel Manager Category	13
Appendix 2 - Bexel Manager Categories	24

Figure 1 - New Project Form	.4
Figure 2 - Custom Breakdown 1/2	.4
Figure 3 - Custom Breakdown 2/2	.5
Figure 4 - Results with Custom Breakdown	.5
Figure 5 - Geometry Optimization Properties	.6
Figure 6 - Optimization Flow	.8
Figure 7 - Bounding Volumes (Sphere, AABB and 8-DOP are not used by Bexel Manager) …	.9
Figure 8 - Triangle Count Calculation	10
Figure 9: Non-Manifold Edges	11
Figure 10 - Logarithmic Derivation of Triangle Count	11

Introduction

To render the objects in your BIM Model, each object needs to convert each object geometry into a <u>triangulated mesh</u>. Depending in the source quality and/or complexity of the geometry, this may result in an excessive number of triangles being rendered. Small numbers of triangles are ok, but once the total number begins to rise significantly, the performance of the viewer can suffer.

With this experimental feature, Bexel will attempt to reduce the number of triangles according to settings defined in the configuration file. After optimization, it's possible to significantly reduce the total number of triangles.

The best use-case for this feature is for model categories that usually have an unnecessarily high level of geometric detail, such as furniture, bathroom appliances/equipment, custom equipment, trees etc. It's not uncommon for objects such as these to have more complexity than the rest of file combined!

How to use

Disclaimer:

Optimizing meshes is a time-consuming process. As this process is performed during initial project-loading, the overall loading time may be increased significantly. Additionally, the process of reducing the triangle count is heavily dependent on the quality of the input geometry, that's to say; the worse the quality of the mesh, the worse the final output of the reduction algorithm will be.

On Project-Load

When creating a new project or version, you will be presented with the regular window as shown below. Clicking on "Choose" under "Mesh Optimization:" will allow you to choose a configuration from the default Knowledge Base / Mesh Optimization folder. Optionally, you can choose a custom configuration file that you've created yourself.

Project				
* New				
Name (*):				
Description:				
Deachption.				
Version				
Name (*):				
Description:				
File (*)-				
File (*):				
File (*):	Character Car		 	
File (*): Choose	Choose from Sam	ples	 	
File (*): Choose Culture:	Choose from Sam	ples		
File (*): Choose Culture: English (United	Choose from Sam	ples		
File (*): Choose Culture: English (United Project Configur	Choose from Sam States) ations:	ples		
File (*): Choose Culture: English (United Project Configur Quantity Calcula	Choose from Sam States) ations:	ples		
File (*): Choose Culture: English (United Project Configur Quantity Calcula Choose	Choose from Sam States) ations:	ples		
File (*): Choose Culture: English (United Project Configur Quantity Calcula Choose	Choose from Sam States) ations: tion:	ples		
File (*): Choose Culture: English (United Project Configur Quantity Calcula Choose Mesh Optimizati	Choose from Sam States) ations: tion:	ples		
File (*): Culture: English (United Project Configur Quantity Calcula Choose Choose	Choose from Sam States) ations: ition:	ples		
File (*): Culture: English (United Project Configur Quantity Calcula Choose Mesh Optimizati Choose Mesh Splitting:	Choose from Sam States) ations: tion:	ples		
File (*): Choose Culture: English (United Project Configur Quantity Calcula Choose Mesh Optimizati Choose	Choose from Sam States) stions: tion:	ples)		

Figure 1 - New Project Form

Once you've filled in the other fields in the form, go ahead and click on "OK" to load the project.

Once the project is loaded, we need to load a custom breakdown structure from the "Knowledge Base" to quickly assess the results of the optimization. Select all the model elements and then follow the following steps:

Figure 2 - Custom Breakdown 1/2

Create Custom Breakdown		– o x
Name: Blank CBS		
Type: Elements V	e Selection 🔿 🐺 Templates 🗸 🕼 🕜 🔀 🖓 🖓 🖂 🚍 💮 🖸 🗲	Reset Tree 🕤 Generate
😫 🗄 Building Storeys 🗸 Reset Add Current Selection	-5 Import From Knowledge Base	Elements
Elements	-> Import Custom Template	6,588
Building 01 (1 Element)	Import From Knowledge Base	
Undefined Storey] (1 Element)		
🗊 🚽 🐨 TOF Footing (1476 Elements)		
Evel 1 (3714 Elements)		

Figure 3 - Custom Breakdown 2/2

• Choose the template related to Mesh Optimization and then click on "OK"

Change your viewer to "Perspective Color Coded" mode and you should see similar results to that below:

Figure 4 - Results with Custom Breakdown

The viewer now visualizes the results of the mesh optimization according to the following result outputs:

- Ignore Optimization was ignored for this project (configuration setting)
- Ignore: No Geometry The object in question has no geometry

- Ignore: Excluded Category The object category was excluded from optimization in the configuration file
- Skip: Defective Geometry The optimization failed because errors were identified in the geometry
- Skip: Non Manifold Similar to "Skip: Defective Geometry".
- Skip: Target Triangles Already Met The target triangle count was equal to or less than the existing number of triangles
- Skip: Min Percentage Difference The final optimized triangle count was less than the specified percentage in the configuration file.
- Reduce Triangles The optimization was successful.
- Oriented Bounding Box the object was converted to an oriented bounding box.
- Oriented Bounding Box Small Volume the object was converted to an oriented bounding box as per the configuration file settings
- Convex Hull the object was converted to a 3d convex hull encompassing the object
- Skip: Internal Error The algorithm encountered an error during the optimization process
- Ignore: Profile Geometry optimization was skipped because the input geometry was already optimal.

In addition the optimization type, additional data pertaining to the optimization is stored on the object under Mesh Optimization:

Figure 5 - Geometry Optimization Properties

- Logarithmic Derivation Of Triangle Count whether the target triangle count was obtained using a logarithmic formula. See <u>Configuration</u> for more information.
- Optimization Type See paragraph above.
- Optimized Triangle Count The final triangle count after optimization.
- Original Triangle Count The original triangle count of the object.
- Target Triangle Count The target triangle count passed to the optimization algorithm

Editing the Configuration (Advanced)

To be able to edit the configuration file, its important to reference the optimization flow first:

Core Settings

 Version: example: 1.0.0.0 - The version of the configuration. This needs to match the version expected by Bexel Manager. If unsure, refer to the file "MeshOptimizerConfig.cfg", found in "C:\Users\YourUserName\AppData\Roaming\BEXEL\Bexel Manager 24\Knowledge Base\MeshOptimizerConfig.cfg".

Figure 6 - Optimization Flow

- OptimizeMeshes: true/false (Default true). This setting directly controls whether mesh optimization will be performed on the model. If false, all other settings will be ignored and no optimization will be performed.
- ExcludedBexelCategories: Example: ["Road","Slab","Railing","Site"] (Default []) Categories listed in this setting will not be optimized
- BoundingBoxOnlyCategories: Example: ["Pipe", "PipeFitting"] (Default [])-Categories listed in this setting will be converted to Oriented Bounding Box (OBB) (Aligned to the Z (Vertical) axis).

Figure 7 - Bounding Volumes (Sphere, AABB and 8-DOP are not used by Bexel Manager)

ConvexHullOnlyCategories: Example: ["Pipe", "PipeFitting"] (Default []) - Categories listed in this setting will be converted to convex hulls. (See Image above)

• PerCategoryOverride: (Default {}) Element meshes can either be optimized using the global settings listed in the config file, or those precisely defined in the override. See Base Optimization Settings below for more information.

Base Optimization Settings

The flow when calculating the target triangle count used by the algorithm is as follows:

Figure 8 - Triangle Count Calculation

- DefaultTriangleCount: (Default 150) This will be used as the target triangle count the optimization algorithm will try to achieve
- OBBVolumeThreshold (Default 0.0001) If the OBB Volume of the mesh is lower than this value, then the geometry will automatically be converted to an OBB.
- SmallVolumeThreshold (Default 0.001) If the OBB Volume of the mesh is lower than this value, the algorithm will attempt to achieve the target triangle count to the DefaultTriangleCount, ignoring the logarithmic formula.
- OptimizeNonManifoldMeshes (Default false) If this is set to true and the algorithm detects a non-manifold mesh, it will attempt to construct a manifold version. Expect unattractive results if the input geometry is bad. (Non-manifold topology polygons have a configuration that cannot be unfolded into a continuous flat piece. Many geometry tools and software cannot work properly with non-manifold geometry. This is the main reason why simplification of non-manifold meshes can lead to unexpected results.)

Figure 9: Non-Manifold Edges

- OptimizeNonValidMeshes (Default false) A comprehensive check of the integrity of the mesh is performed each time. If the mesh has errors and this option is set to true, the optimization will still attempt to work possible leading to unexpected results. Use only when desperate for reductions in mesh complexity.
- LogarithmicDerivationOfTriangleCount
 - Formula

 $TargetTriangles = NumStartingTriangles + \log_{LoaBase} (OBBVolume \times InnerMultiplier) \times OuterMultiplier$

Figure 10 - Logarithmic Derivation of Triangle Count

- Enabled: if false, the target triangle count will simply be the DefaultTriangleCount
- NumStartingTriangles (See Formula) (Default 250)
- LogBase the base to use in the logarithmic calculation (See Formula) (Default 10)
- InnerMultiplier (See Formula) (Default 1000)
- OuterMultiplier (See Formula) (Default 250)
- MinPercentageDifference (Default 25) Used when evaluating the final target triangle count to be passed to the algorithm. See Figure 3.
- MaxPercentageDifference (Default 90) Used when evaluating the final target triangle count to be passed to the algorithm. See Figure 3.

Limitations

As this feature is still experimental at this stage, there are some limitations that you need to be aware of:

- Additional loading time Optimizing triangulates meshes is a tricky process that requires analyzing the geometry in detail. This is obviously multiplied by the number of objects being optimized and may result in a significantly longer initial load-time if there are a lot of objects in the model. Our personal experience is that a combination of optimization and bounding-box-conversion leads to the best results, both in terms of loading time, triangle reduction and visual aesthetic.
- Degeneration of object geometry Reducing the number of triangles decreases the "resolution" of the geometry, and as such if it is pushed too far the resulting geometry may look either jumbled up or unfit for use. Start with small reductions and experiment with higher degrees of simplification for certain categories once you get a good feel for how the results end up.
- Input Mesh Quality The simplification works best when the quality of the mesh is high. This means no holes, manifold edges and internal consistency. Most of these aspects will be out of your control but are important nevertheless to keep in mind if the optimization leads to poor results.
- Using the optimization feature is currently disabled when updating an existing project, or when loading a Bexel Manager ".besln" file.

Appendix 1 – (Mapping) IFC Class to Bexel Manager Category

IfcSite: Site **IfcBuilding:** Building IfcBuildingStorey: Storey IfcSpace: Space IfcSpatialZone: Space IfcSpatialZoneType: Space IfcBeam: Beam IfcBeam_Structural Framing: Beam IfcBeamStandardCase: Beam IfcChimneyType: GenericModel IfcProxy: GenericModel IfcBuildingElementProxy: GenericModel IfcBuildingElementProxy_COMPUTER: DataDevice IfcBuildingElementProxy_Communication Devices: CommunicationDevices IfcBuildingElementProxy_Duct Accessory: DuctAccessory IfcBuildingElementProxy Electrical Equipment: ElectricalEquipment IfcBuildingElementProxy_Electrical Fixture: ElectricalFixture IfcBuildingElementProxy_Lighting Device: LightingDevice IfcBuildingElementProxy_Mass: Mass IfcBuildingElementProxy_Mechanical Equipment: MechanicalEquipment IfcBuildingElementProxy_Security Devices: SecurityDevices IfcBuildingElementProxy Specialty Equipment: SpecialtyEquipment IfcBuildingElementProxy_Parking: Parking IfcBuildingElementProxy_Planting: Planting IfcBuildingElementProxy_Plumbing Fixture: PlumbingFixture IfcBuildingElementProxy_Data Device: DataDevice

IfcBuildingElementProxy_Toposolid: Toposolid IfcBuildingElementProxy_MEP Fabrication Ductwork Stiffeners: FabricationDuctworkStiffener IfcBuildingElementProxy_Plumbing Equipment: PlumbingEquipment IfcBuildingElementProxy Slab Edges: Slab IfcBuildingElementProxy_Structural Framing: Beam IfcBuildingElementProxy Parts: Part IfcBuildingElementProxyType: GenericModel IfcBuildingElementProxyType_COMPUTER: DataDevice IfcBuildingElementProxyType_Communication Devices: CommunicationDevices IfcBuildingElementProxyType_Duct Accessory: DuctAccessory IfcBuildingElementProxyType_Electrical Equipment: ElectricalEquipment IfcBuildingElementProxyType_Electrical Fixture: ElectricalFixture IfcBuildingElementProxyType_Lighting Device: LightingDevice IfcBuildingElementProxyType Mass: Mass IfcBuildingElementProxyType_Mechanical Equipment: MechanicalEquipment IfcBuildingElementProxyType_Security Devices: SecurityDevices IfcBuildingElementProxyType_Specialty Equipment: SpecialtyEquipment IfcBuildingElementProxyType_Parking: Parking IfcBuildingElementProxyType_Planting: Planting IfcBuildingElementProxyType_PlumbingFixture: PlumbingFixture IfcBuildingElementProxyType_Data Device: DataDevice IfcColumn: Column IfcColumnStandardCase: Column IfcCovering: Covering IfcCovering_CEILING: Ceiling

IfcCovering_CLADDING: Covering

IfcCovering_FLOORING: Slab

IfcCovering_INSULATION: Insulation

IfcCovering_MEMBRANE: Covering

IfcCovering_ROOFING: Roof

IfcCovering_SLEEVING: Covering

IfcCovering_WRAPPING: Covering IfcCoveringType: Covering

IfcCoveringType_CEILING: Ceiling

IfcCoveringType_CLADDING: Covering

IfcCoveringType_FLOORING: Slab

IfcCoveringType_INSULATION: Insulation

IfcCoveringType_MEMBRANE: Covering

IfcCoveringType_ROOFING: Roof

IfcCoveringType_SLEEVING: Covering

IfcCoveringType_WRAPPING: Covering IfcCurtainWall: CurtainWall

IfcCurtainWall_Curtain System: CurtainSystem IfcDoor: Door IfcDoorStandardCase: Door IfcFooting: StructuralFoundation

IfcFooting_Structural Columns: StructuralColumn

IfcFooting_Structural Framing: Beam IfcMember: Member

IfcMember_MULLION: CurtainWallMullion

IfcMember_Curtain Wall Mullion: CurtainWallMullion
IfcMemberType: Member

IfcMemberType_MULLION: CurtainWallMullion

IfcMemberType_Curtain Wall Mullion: CurtainWallMullion
IfcMemberStandardCase: Member

IfcMemberStandardCase_MULLION: CurtainWallMullion

IfcMemberStandardCase_Curtain Wall Mullion: CurtainWallMullion IfcPile: StructuralColumn

IfcPile_Structural Foundations: StructuralFoundation
IfcPlate: Plate

IfcPlate_CURTAIN_PANEL: CurtainPanel

IfcPlate_Curtain Panel: CurtainPanel IfcPlateType: Plate

IfcPlateType_CURTAIN_PANEL: CurtainPanel

IfcPlateType_Curtain Panel: CurtainPanel IfcPlateStandardCase: Plate

IfcPlateStandardCase_CURTAIN_PANEL: CurtainPanel

IfcPlateStandardCase_Curtain Panel: CurtainPanel IfcRailing: Railing IfcRamp: Ramp IfcRampFlight: Ramp IfcRoof: Roof IfcShadingDevice: GenericModel IfcSlab: Slab

IfcSlab_ROOF: Roof

IfcSlab_BASESLAB: StructuralFoundation

IfcSlab_Roof: Roof

IfcSlab_Structural Foundation: StructuralFoundation IfcSlabType: Slab

IfcSlabType_ROOF: Roof

IfcSlabType_BASESLAB: StructuralFoundation

IfcSlabType_Roof: Roof

IfcSlabType_Structural Foundations: StructuralFoundation IfcSlabElementedCase: Slab

IfcSlabElementedCase_ROOF: Roof

IfcSlabElementedCase_BASESLAB: StructuralFoundation

IfcSlabElementedCase_Roof: Roof

IfcSlabElementedCase_Structural Foundations: StructuralFoundation IfcSlabStandardCase: Slab

IfcSlabStandardCase_ROOF: Roof

IfcSlabStandardCase_BASESLAB: StructuralFoundation

IfcSlabStandardCase_Roof: Roof

IfcSlabStandardCase_Structural Foundations: StructuralFoundation IfcStair: Stairs IfcStairFlight: Stairs IfcWall: Wall

IfcWall_Generic Models: GenericModel IfcWallElementedCase: Wall IfcWallStandardCase: Wall

IfcWallStandardCase_Generic Models: GenericModel IfcWindow: Window IfcWindowStandardCase: Window IfcDistributionElement: SpecialtyEquipment IfcDistributionControlElement: SpecialtyEquipment

IfcDistributionControlElement_FLOATING: MechanicalControlDevice IfcActuator: SpecialtyEquipment IfcAlarm: SecurityDevices IfcController: SpecialtyEquipment

IfcController_FLOATING: MechanicalControlDevice IfcControllerType: SpecialtyEquipment

IfcControllerType_FLOATING: MechanicalControlDevice IfcFlowInstrument: SpecialtyEquipment IfcProtectiveDeviceTrippingUnit: SpecialtyEquipment IfcSensor: SpecialtyEquipment

IfcUnitaryControlElement: SpecialtyEquipment IfcDistributionChamberElement: GenericModel IfcEnergyConversionDevice: MechanicalEquipment IfcAirToAirHeatRecovery: MechanicalEquipment IfcBoiler: MechanicalEquipment IfcBurner: MechanicalEquipment IfcChiller: MechanicalEquipment IfcCoil: MechanicalEquipment IfcCondenser: MechanicalEquipment IfcCooledBeam: MechanicalEquipment IfcCoolingTower: MechanicalEquipment IfcElectricGenerator: MechanicalEquipment IfcElectricMotor: MechanicalEquipment IfcEngine: MechanicalEquipment IfcEvaporativeCooler: MechanicalEquipment IfcEvaporator: MechanicalEquipment IfcHeatExchanger: MechanicalEquipment IfcHumidifier: MechanicalEquipment IfcMotorConnection: MechanicalEquipment IfcSolarDevice: MechanicalEquipment IfcTransformer: MechanicalEquipment IfcTubeBundle: MechanicalEquipment IfcUnitaryEquipment: MechanicalEquipment IfcFlowController: FlowAccessory IfcFlowControllerType: FlowAccessory IfcAirTerminalBox: AirTerminal IfcAirTerminalBoxType: AirTerminal IfcDamper: Damper IfcDamperType: Damper IfcElectricDistributionBoard: ElectricalEquipment IfcElectricDistributionBoardType: ElectricalEquipment IfcElectricTimeControl: ElectricalEquipment IfcElectricTimeControlType: ElectricalEquipment IfcFlowMeter: FlowAccessory IfcFlowMeterType: FlowAccessory IfcProtectiveDevice: ElectricalEquipment IfcProtectiveDeviceType: ElectricalEquipment IfcSwitchingDevice: ElectricalEquipment

IfcSwitchingDeviceType: ElectricalEquipment IfcValve: Valve IfcValveType: Valve IfcElectricDistributionPoint: GenericModel IfcFlowMovingDevice: MechanicalEquipment IfcCompressor: MechanicalEquipment IfcFan: MechanicalEquipment IflfcPump: MechanicalEquipment IfcFlowStorageDevice: SpecialtyEquipment IfcElectricFlowStorageDevice: SpecialtyEquipment IfcTank: SpecialtyEquipment IfcFlowTreatmentDevice: FlowAccessory IfcDuctSilencer: DuctAccessory IfcFilter: FlowAccessory IfcInterceptor: FlowAccessory IfcElementAssembly: Assembly

IfcElementAssembly_BEAM_GRID: StructuralBeamSystem

IfcElementAssembly_TRUSS: Truss

IfcElementAssembly_Structural Beam Systems: StructuralBeamSystem

IfcElementAssembly_Structural Trusses: Truss IfcBuildingElementPart: Part

IfcBuildingElementPart_Generic Models: GenericModel

IfcBuildingElementPart_Structural Framing: Beam IfcDiscreteAccessory: DiscreteAccessory IfcDiscreteAccessoryType: DiscreteAccessory IfcFastener: Fastener IfcFastenerType: Fastener IfcMechanicalFastener: Fastener IfcMechanicalFastenerType: Fastener IfcReinforcingBar: StructuralRebar IfcReinforcingMesh: StructuralRebar IfcTendon: Tendon IfcTendonType: Tendon IfcTendonAnchor: Tendon

IfcTendonAnchorType: Tendon IfcEquipmentElement: SpecialtyEquipment

IfcEquipmentElement_FLOATING: MechanicalControlDevice

IfcEquipmentElement_BATH: PlumbingEquipment IfcFurnishingElement: Furniture IfcFurniture: Furniture IfcSystemFurnitureElement: FurnitureSystem IfcTransportElement: Transport IfcTransportElementType: Transport IfcGrid: Empty IfcFlowFitting: FlowFitting

IfcFlowFitting_Cable Tray Fitting: CableTrayFitting

IfcFlowFitting_Conduit Fitting: ConduitFitting

IfcFlowFitting_Duct Fitting: DuctFitting

IfcFlowFitting_Pipe Fitting: PipeFitting IfcFlowFittingType: FlowFitting

IfcFlowFittingType_Cable Tray Fitting: CableTrayFitting

IfcFlowFittingType_Conduit Fitting: ConduitFitting

IfcFlowFittingType_Duct Fitting: DuctFitting

IfcFlowFittingType_Pipe Fitting: PipeFitting IfcCableCarrierFittingType: CableTrayFitting

IfcCableCarrierFittingType_Conduit Fitting: ConduitFitting IfcCableCarrierFitting: CableTrayFitting

IfcCableCarrierFitting_Conduit Fitting: ConduitFitting IfcCableFitting: ConduitFitting

IfcCableFitting_Cable Tray Fitting: CableTrayFitting

IfcCableFitting_Conduit Fitting: ConduitFitting IfcDuctFittingType: DuctFitting IfcDuctFitting: DuctFitting IfcJunctionBoxType: ElectricalFixture IfcJunctionBox: ElectricalFixture

IfcPipeFittingType: PipeFitting IfcPipeFitting: PipeFitting IfcFlowSegment: FlowSegment IfcFlowSegment_Cable Tray: CableTray IfcFlowSegment_Conduit: Conduit IfcFlowSegment Duct: Duct IfcFlowSegment_Flex Duct: FlexDuct IfcFlowSegment_Pipe: Pipe IfcFlowSegmentType: FlowSegment IfcFlowSegmentType_Cable Tray: CableTray IfcFlowSegmentType_Conduit: Conduit IfcFlowSegmentType_Duct: Duct IfcFlowSegmentType_Flex Duct: FlexDuct IfcFlowSegmentType_Pipe: Pipe IfcCableCarrierSegment: CableTray IfcCableCarrierSegment_CONDUITSEGMENT: Conduit IfcCableCarrierSegment_Conduit: Conduit IfcCableCarrierSegmentType: CableTray IfcCableCarrierSegmentType_CONDUITSEGMENT: Conduit IfcCableCarrierSegmentType_Conduit: Conduit IfcCableSegment: Conduit IfcCableSegmentType: Conduit IfcDuctSegment: Duct IfcDuctSegment_FLEXIBLESEGMENT: FlexDuct IfcDuctSegmentType: Duct IfcDuctSegmentType_FLEXIBLESEGMENT: FlexDuct

IfcPipeSegment: FlexPipe

IfcPipeSegment_FLEXIBLESEGMENT: FlexPipe

IfcPipeSegment_Flex Pipes: FlexPipe IfcPipeSegmentType: Pipe

IfcPipeSegmentType_FLEXIBLESEGMENT: FlexPipe IfcFlowTerminal: FlowTerminal

IfcFlowTerminal_Air Terminal: AirTerminal

IfcFlowTerminal_Electrical Equipment: ElectricalEquipment

IfcFlowTerminal_Electrical Fixture: ElectricalFixture

IfcFlowTerminal_Lighting Fixture: LightingFixture

IfcFlowTerminal_Plumbing Fixture: PlumbingFixture

IfcFlowTerminal_Sprinkler: Sprinkler

IfcFlowTerminalType: FlowTerminal

IfcFlowTerminalType_Air Terminal: AirTerminal

IfcFlowTerminalType_Electrical Equipment: ElectricalEquipment

IfcFlowTerminalType_Electrical Fixture: ElectricalFixture

IfcFlowTerminalType_Lighting Fixture: LightingFixture

IfcFlowTerminalType_Plumbing Fixture: PlumbingFixture

IfcFlowTerminalType_Sprinkler: Sprinkler

IfcAirTerminalType: AirTerminal

IfcAirTerminal: AirTerminal

IfcAudioVisualApplianceType: AudioVisualDevice

IfcAudioVisualAppliance: AudioVisualDevice

IfcCommunicationsAppliance: CommunicationDevices

IfcCommunicationsAppliance_ANTENNA: DataDevice IfcCommunicationsApplianceType: CommunicationDevices

IfcCommunicationsApplianceType_ANTENNA: DataDevice IfcElectricApplianceType: ElectricalFixture

IfcElectricApplianceType_DISHWASHER: PlumbingFixture

IfcElectricApplianceType_FREEZER: SpecialtyEquipment

IfcElectricApplianceType_FRIDGE_FREEZER: SpecialtyEquipment

IfcElectricApplianceType_MICROWAVE: SpecialtyEquipment IfcElectricApplianceType_REFRIGERATOR: SpecialtyEquipment IfcElectricApplianceType_TELEPHONE: TelephoneDevice IfcElectricApplianceType COMPUTER: DataDevice IfcElectricApplianceType Data Devices: DataDevice IfcElectricAppliance: ElectricalFixture IfcElectricAppliance DISHWASHER: PlumbingFixture IfcElectricAppliance_FREEZER: SpecialtyEquipment IfcElectricAppliance FRIDGE FREEZER: SpecialtyEquipment IfcElectricAppliance_MICROWAVE: SpecialtyEquipment IfcElectricAppliance_REFRIGERATOR: SpecialtyEquipment IfcElectricAppliance_TELEPHONE: TelephoneDevice IfcElectricAppliance COMPUTER: DataDevice IfcElectricAppliance_Data Devices: DataDevice IfcElectricHeaterType: ElectricalFixture IfcFireSuppressionTerminal: FireProtection IfcFireSuppressionTerminal_SPRINKLER: Sprinkler IfcFireSuppressionTerminalType: FireProtection IfcFireSuppressionTerminalType_SPRINKLER: Sprinkler IfcGasTerminalType: SpecialtyEquipment IfcLampType: LightingDevice

IfcLamp: LightingDevice IfcLightFixtureType: LightingFixture IfcLightFixture: LightingFixture IfcMedicalDeviceType: MedicalEquipment IfcMedicalDevice: MedicalEquipment IfcOutletType: ElectricalFixture IfcOutlet: ElectricalFixture IfcSanitaryTerminalType: PlumbingFixture

IfcSanitaryTerminalType_BATH: PlumbingEquipment IfcSanitaryTerminal: PlumbingFixture

IfcSanitaryTerminal_BATH: PlumbingEquipment IfcSpaceHeater: GenericModel IfcStackTerminalType: GenericModel IfcStackTerminal: GenericModel IfcWasteTerminal: GenericModel IfcGeographicElementType: GenericModel IfcGeographicElement: GenericModel

IfcGeographicElement_TERRAIN: Toposolid IfcCivilElementType: GenericModel IfcCivilElement: GenericModel IfcAnalyticalMember: Analytical IfcAnalyticalMemberType: Analytical IfcAnalyticalPanel: Analytical IfcAnalyticalPanelType: Analytical

Appendix 2 - Bexel Manager Categories

Abutment **BridgeFraming** ExpansionJoints Pier StructuralTendons VibrationManagement AudioVisualDevice **FireProtection** FoodServiceEquipment Hardscape MedicalEquipment Signage TemporaryStructure VerticalCirculation Bearing BridgeCable BridgeDeck

Road Zone MechanicalControlDevice PlumbingEquipment Analytical DataDevice FabricationDuctworkStiffener StructuralBeamSystem StructuralFabricArea StructuralFabricReinforcement StructuralFraming Toposolid Truss Wall Window Door Slab Ceiling Roof Column Ramp Stairs Railing Furniture Casework AirTerminal Pipe FlexPipe PipeFitting Duct FlexDuct DuctFitting PlumbingFixture SpecialtyEquipment MechanicalEquipment Parking CurtainPanel CurtainWallMullion

StructuralFoundation StructuralColumn Beam Space WallSweep GenericModel Wire ElectricalEquipment Sprinkler PipeAccessory DuctAccessory LightingDevice TelephoneDevice LightingFixture ElectricalFixture CurtainWall CableTray CableTrayFitting Conduit ConduitFitting Planting Part FireAlarmDevice Mass CommunicationDevices SecurityDevices StructuralRebar FurnitureSystem CurtainSystem StructuralConnection Covering Insulation Member Assembly FlowSegment FlowAccessory FlowTerminal FlowFitting

Valve Damper Tendon Fastener Plate Transport DiscreteAccessory Site

